• English
    • polski
  • English 
    • English
    • polski
  • Login
View Item 
  •   DSpace Home
  • Institute of Geophysics, Polish Academy of Sciences
  • Department of Hydrology and Hydrodynamics IG PAS
  • View Item
  •   DSpace Home
  • Institute of Geophysics, Polish Academy of Sciences
  • Department of Hydrology and Hydrodynamics IG PAS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Can sediments play a role in river flood risk mapping? Learning from selected European examples

Thumbnail
View/Open
main article (4.478Mb)
Date
2023-09-28
Author
Nones, Michael
Guo, Yiwei
Metadata
Show full item record
Abstract
Background: Climate change and increasing anthropogenic pressure are two of the major drivers of increasing extreme events like droughts and floods. To deal with the increasing number of flooding events hitting Europe in the last few decades, around twenty years ago the European Commission started to develop ad-hoc legislation to reduce flood risk by mapping flood hazard and risk areas, such as the Directive 2007/60/EC on the Assessment and Management of Flood Risk. This Directive looks to identify regions where flood management strategies should be prioritized. Despite this holistic approach, flaws connected to the consideration of sediment transport and morphological changes in rivers exist, leading to potential underestimations of the impact of floods affecting active watercourses or areas subjected to frequent morphological changes. Results: By discussing six examples related to European lowland and mountain watercourses affected by significant floods in the last 20 years, the present mini-review aims to provide additional evidence on the need for a rethinking of flood risk mapping, moving from a “clear water” perspective to a more integrated approach, where the interactions between all the fluvial components (water, sediment, biota, and humans) are adequately considered. Conclusions: The examples reported here show the importance of considering sediment and wood in flood risk management, suggesting the need for integrating flood-related studies with other disciplines like geomorphology and ecohydrology.
URI
https://dspace.igf.edu.pl/xmlui/handle/123456789/121
Collections
  • Department of Hydrology and Hydrodynamics IG PAS

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV